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ABSTRACT 

We prove that for every bounded linear operator T: C ~P ---* H (1 < p <~ oo, 

H is a Hilbert space, C 2~ is the Schatten space) there exists a continuous 

linear form f on C P such that .f .~_ 0, II f ll(cp)*-- I and 

vx e c 2p, II T(z) I1_< 2V5 II T I1</ ,  x'x + ~ _ _  * >1i ' , .  
2 

For p = oo this non-commutat ive analogue of Grothendieck's  theorem 

was first proved by G. Pisier. In the above s ta tement  the Schatten space 

C 2~ can be replaced by CE(2 ) where E (~) is the 2-convexifieation of the 

symmetr ic  sequence space E,  and f is a continuous linear form on CE. 

The  s ta tement  can also be extended to LE(2 ) (M, 1") where M is a Von 

Neumann  algebra, r a trace on M, E a symmetr ic  function space. 

Introduction 

This work fits in a long series of papers extending properties of symmetric se- 

quence spaces E to Schatten (unitary) spaces CE, and properties of symmetric 

function spaces on [0,1] or ]0, oo[ to LE(M, r)  spaces defined on a Von Neumann 

algebra M and a suitable trace r: see for example [GTJ], [TJ], [AL], [A], [FK], 

[X1], [X2], [X3]. We first study the set $a  of norm one linear functionals support- 

ing the unit ball of CE at A (part II). We think that these results are interesting 

in their own right, we use them later on. 

Our main aim is to prove a factorization theorem which extends Grothendieck's 

theorem for C(K) (continuous functions on the compact set K)  [cf P2, theorem 

5.4] and Pisier's theorem for C*-algebras [P1] : 
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THEOREM 0: Let 7-[ be a Hilbert space, E a symmetr ic  sequence space, E (2) its 

2-convexification. We assume that E* has a strictly increasing norm. Let T be 

a bounded//near operator : CEc2) ~ ~ .  Then there exists a positive linear form 

f on CE, II f II = 1, suc~ that 

x*x + z z *  >1/2 . 
vx • CEC,) II r ( x )  I1_< 2 v ~  II W I1< f ,  2 

We recall that  if C ( K )  replaces CE(2) the constant is less than ~ and the 

constant for a C*-algebra is less than 2. 

We will also prove a generalization of Theorem 0 for LE(2)(M, r)  spaces (see 

Theorem V.5). 

Theorem 0 has been predicted for many years. The commutative version, 

for operators: E (2) ~ ~ where E (2) is a 2-convex Kfithe function space, is 

Grothendieck's theorem for E --- E (2) -- C(K)  ; the general case is proved in [M, 

proof of Theorem 28] as a consequence of the C ( K )  case, modulo an analogue of 

[P1, Proposition 1.1]. 

The case Co0 (-- K(H) ,  compact operators on a Hilbert space H) is contained 

in Pisier's theorem. The case C 2p = Ct~P = C(t~)(2) (2 _~ p < oo) was already 

known: actually it was proved in [LPP, Theorem IV.4] that  Theorem 0 holds 

true for CE(2) if and only if Khintchine inequalities hold true in the dual space of 

CE(2); these inequalities hold true in the dual space of C 2p for 1 _~ p _~ co [LPP, 

Corollary IIL4]. 

This was our motivation and our knowledge when we first tried to prove The- 

orem 0. In a previous version of this paper we gave a proof of Theorem 0 which 

did not extend completely to the LE(~)(M, r)  setting. After we had submitted 

this first version we learnt from the referee a proof for C 2p which he had known 

for several years but which had never been published. Some steps were similar 

to ours, some fitted only in the C 2p case. Let us now make some comments on 

the proof we present here. 

Besides [P1] and [LPP] other proofs of Pisier's theorem for C*-algebras can be 

found in [Kal, Theorem 2] and [H, Appendix]. Our proof (as well as the referee's) 

follows Haagerup's line. I-Iaagerup uses the easy equality 

t 2 B2 C itB O(t 2 ) II Zd + itB - ~ I1=11 II +o(t~) = 1 + 

for hermitian B, t • R, in the operator norm. 
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2 In our case the idea is to majorize II A + itB IIc~(=), up to the order 2, around 

t = 0, for A > 0 and B hermitian (the referee's proof uses E II A + aB  I1~, 
instead, where ,  is a random variable such that  P ( ,  = +1) = P ( ,  = -1 )  = 1/2). 

In the finite dimensional case we get 

(1) 2 < A 2 II A + itB 11%(2)-II + 2t2B2 IIc, +o(t=). 

This easily implies theorem 0 if Cs  is smooth and if T: CE(2) --* 7~ attains 

its norm at A ~_ O, A E CE(3) (see Lemma IV.3); the desired linear form is 

the tangent linear functional at A 2. Note that for 1 < p < oo, C p is smooth 

and SA = {A p-l} for A > 0, II A IIc,= 1. This makes everything simpler, in 

particular all the results of part II are obvious in this case. If A 2 is not a smooth 

point for CE we consider II A + i t B -  t2C 1{%(2) for A _~ 0, B hermitian, C 

depending on A, B and we have to "choose" a linear form in SA2. 

The difference between our two versions (and between the referee's proof) lies 

in the way these norms are estimated. In our first version we used an argument 

of perturbation theory in finite dimensional spaces, namely order 2 expansions 

of the eigenvalues of I A + i t B  12 around t = 0 (see the comments on part III). 

Our argument now relies on the fact that for suitable B's the estimation of the 

norm is easy and the set of these B's is big enough (see part III). 

Let us mention a related norm inequality [TJ, Proposition 1]: Let A > 0, B 

be hermitian operators in C~(2). Then 

(2) tl A '  IIc,,<_ll A + i tB .A 2 IIc,, +2 t  II B 2 IIc,, • 

The paper is organized as follows: in part I we give notation and definitions 

for CE spaces; in part II we study the set SA of supporting linear functionals at 

A E CE and the expansion of H A+tB  lice around t -- 0 up to the order 1; in part 

III we study II A + itB 11%(2) around t -- 0 up to the order 2 for some hermitian 

A's and B's; in part IV we prove Theorem 0, first in the finite dimensional case, 

then we give the reduction steps from the general ease to the finite dimensional 

one; part V is devoted to the LE(M, r) setting: we give definitions and we 

generalize results from parts II, III, IV in order to prove Theorem V.5 which is 

the version of Theorem 0 in this setting. 

We choose to consider separately the cases CE and LE(M, r) because the first 

one is simpler and familiar to more readers, and the proof is more transparent. 
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We could have simplified the statement of some lemmas in parts II, III, IV if our 

aim had been only the proof of Theorem O, because most results are needed in the 

finite dimensional case only; but some are of interest in the infinite dimensional 

case, moreover we also wanted to prepare the extension to the LE(M,  r)  setting. 

I. Notat ion and definitions (CE spaces) 

All Banach spaces in this paper are complex Banach spaces. The dual of a Banach 

space X is denoted by X*. 

Definition 1.1: A Banach lattice E has a strictly increasing norm if for x, y > 0, 

x , ~  e E ,  II x + y ll=ll x II implies y = 0. 

We will use this property only when x A y = 0. For example, the norm of E is 

strictly increasing if E is the dual space of a smooth space, or more generally if 

E is q-concave with constant 1 

For a Ba~ach lattice E and 1 < p < co, E (v) denotes the p-eonvexification of 

E,  i.e. ][ x ][~[p)=[[[ x ]VHE [LT, ld, p. 53]. For example (tv) (2) = t 2p, 1 <_ p <_ co. 

A symmetric sequence space (see [S] and [LT, Definition 2.a.1]) is a Banach 

lattice of bounded complex sequences equipped with a norm such that 

(i) II ( a0 , . . . , an , . . . ) [ [= l l  ei°°a,(o),. . . ,ei°"a~(n), ." ")II for every permutation 

Ir of N and every (0o,.. .  ,On,. . . )  in R N, 

(ii) II (1, 0 , . . . ,  0 , . . . )  II= 1, 

(iii) either E is separable or it satisfies the Fatou property, namely 

( a 0 , . . . , a n , . . . )  lies in E as soon as supN_> 0 II (ao , . . . , aN ,O , . . .  II) is fi- 

nite, and II ( ao , . . . ,  a , , . . . ) I I  = supN_> o II (ao , . . .  aN, 0 , . . . ) I I .  
Note that  if (ao ,a l , . . .  , an , . . . )  E E and ( (ao ,a l , . . .  ,aN,O, . .  "))N_>I is not a 

Cauchy sequence in E, E has a closed subspace isomorphic to t °°, hence E is 

separable if and only if t 1 is norm dense in E. If E is separable, E* is a symmetric 

sequence space. If E # t °°, E embeds canonically in co IS, Theorem 1.16]. If 

E satisfies the Fatou property, E is the dual space of a separable symmetric 

sequence space F, namely the norm closure of finitely supported sequences in 

E*.  

If E is a symmetric sequence space E (p) is also a symmetric sequence space ; 

E and E (v) are simultaneously separable or satisfy the Fatou property simulta- 

neously. 
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Let H be a separable Hilbert space. B(H) denotes the space of bounded linear 

operators on H, K(H) denotes the space of compact operators. Excepted in part  

V, r denotes the usual trace. 

For A 6 B(H) 

[ A [= (A'A) 1/2 

and for A • K(H) (s,,(A)),,>o is the sequence of eigenvalues of I A I, arranged 

in non increasing order, each one being counted as many times as its multiplicity 

order. 

For every hermitian A • K(H) we denote by Q the hermitian projection on 

ker A and P = IdH -- Q. We also denote by :P(A) the set of spectral projections 

r of A such that ~rA -~ • B(H). Note that P • ~P(A) if and only if the spectrum 

of A • K(H) is a finite set (in particular if H is finite dimensional). We denote 

by A + the positive part of A and A-  --- A + - A > 0. Let E ~ ~oo be a symmetric 

sequence space. The Schatten space CE = CE(B(H)) is the space of compact 

operators A on H such that (s,,(A)),,>0 lies in E,  with 

II A licE=I[ (sn(A)),>0 HE. 

Ct, is denoted by C p (1 _< p < oo). ReCE denotes the set of hermitian elements 

in CE. 

We recall that if (P,),>I is an increasing sequence of hermitian projections: 

H ~ H, if P = V,,>l P -  and if E is separable 

(1.1) Vx • CE II Px - P,x IIc="* 0 (n ~ +oo). 

Indeed (P ,+I  - P , ) ,>~ is a w.u.c, sequence in B(H), (P,+lX - P,x),>I is a 

w.u.c, sequence in C 1 if x • C* ; (I.1) holds true in C 1 because C 1 is weakly 

complete ; as C 1 is norm dense in CE (I.1) holds true in CE. 

An operator B • B(H) defines a continuous linear form on CE if VA • CE, 

< B, A >= v(B*A) is finite. If E is separable and E # ~1 the dual space of CE is 

CE. [S, Theorem 3.2], the dual space of C * is B(H). For any symmetric sequence 

space E an element * • C~ is called positive (respectively hermitian) if it is a 

positive linear form on CE (respectively < ~, A > is real for every A • Re CE). 

The set of hermitian linear forms is denoted by Re C~:. For * • C~ we define ** 

by 

A 4 <  £,A* > .  
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For R E B( H) and £ E C~ we denote 

R£ : CE ---* C A---,< £,R*A >, 

£R : CE ~ C A 4 <  i ,  A R *  > . 

IfgE ReC~,(Re)*  =JR*. 

If E is separable, every g E C~: lies in B(H)  and the above definitions coincide 

with the usual ones for bounded operators. 

II. Linear functlonals supporting the unit ball of  CE atA 

D e ~ t i o n  II.l: Let X be a Banaeh space, A , B  E X, A ~ O. Let 

SA={eEX'lllell=l, < e,A >=11 A II}, 
II A + tB I I -  II A II 

GA(B)  m l i ra  
t--*O+ t 

Note that the set SA of norm one linear funetionals supporting the unit ball of 

X at A/II A II is a w" compact convex subset of X*. As the function t -~11 A+tB II 

is convex and continuous on R the limit in the definition of GA(B) actually exists. 

We will study GA(B) when X = CE and compare SA and SA, for A E CE(2). 

Note that for X = C v (1 < p < ~ )  and A E C p, II A I i o=  1, A ___ o, 

SA = {A p-1 } because C p is smooth, by Clarkson-McCarthy inequalities [S, 

Theorem 1.21], hence the results of this chapter are obvious for CE = C p. 

We recall the following 

LEMMA II.2: Let X be a Banach space, A, B E X,  A ~ O. Then 
(i) GA(B) = lim IIA+tBII-IIAII = sup Re < £, B > 

t-*0+ t tE6A 

(ii) Vp > 1, v-.o+lim IIA+tBII'-IIAII', = ' II A II"-" GA(B). 

Proof." For (i) see for example [DS, chapter V.9, Theorem 5, Lernraa 10]. 

(ii) follows from (i) by the chain rule: 

tim II A + tB II' - II  a II' = tim II A + tB II p - I I  A II p GA(B) 
,-.0+ t ,-.0+ tl A + tB II - II A II 

u p -  II A II p 
= l im CA(B) = p II A II ' -1  CA(B). 

,-~,A, y -  II a II 

The following lemraa is an easy consequence of Lennna II.2 (i) and the defini- 

tions. 
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LEMMA II.3: Let E be a symmetric sequence space and A ~ O, A E CE. Let P 

be the projection on (ker A) a and P + Q = Id, let ReSA = {Ree I e E SA}. 

(i) Let A E Re CE. Then/'or every £ E SA, PeP E SA and PeP + QeQ E SA. 

(ii) Let A E Re CE. Then e* E SA for every ~ E SA and Re S A C  ,-CA. 

(iii) Let A 6 Re CE. Then Re SA = SA iff 

V B 6 R e C E  GA( iB)=O i.e. 

(iv) Let A 6 Re CE. Then 

VB 6 ReCE G A ( B ) =  

II A ÷ i tB I1=11 A II ÷o(t). 

sup < e,  B > . 
IEReSA 

(v) Let A = U [ A [ be a polar decomposition of A. Then 

VB E CE GA(B) = GIAI(U*B ) and U*SA = SIA I . 

Proof'. (i) Let l E SA. Then, as A = AP = P A P  

I] A ]l=< i, A > = <  e, P A P  + QAQ > = <  PeP, A > = <  PeP + QeQ, A ><]] AII 

by [S, Theorem 1.19]. 

(ii) Let e E SA. Then 

I[ A tl=< e,A > =  < ~,A > = <  ~*,A > 

hence e* E SA and Re e = _~L E SA by the convexity of SA. 

(iii) If A, B E Re CE, GA(iB) = GA(- iB) .  Hence by Lemma II.2(i) 

sup R e < e ,  i B > = -  inf R e < e ,  i B > .  
IESA tESA 

Hence GA(iB) = 0 iff 

VeESA, R e < e ,  i B > = 0 ,  i.e. < e , B > E R .  

(iv) By Lemma II.2(i), if B E Re CE 

GA(B) = sup Re < g,B > =  sup < Ree, B > 
tESA tESA 

= sup < e , B >  by(ii) .  
tERe 5A 

(v) Let A = U I A I .  Then II A + tB II=ll U I A I + t U U * B  II=lll A I+tU*B II 
and for every ~ E SA 

II A I1=< e,A > = <  e,u I A I>=< U'e, I A I>=111 m III- 



338 F. LUST-PIQUARD Isr. J. Math. 

LEMMA II.4: Let E be a symmetric sequence space such that E* has a strictly 

increasing norm. Let Ao E Re CE and let Q be the projection on ker A. Let 

X = Q X Q  E CE. Then 

II A T tX ]IcR=ll A II To(t) 

and for every t e SA, QtQ = O. 

Proof: As II A + t X  I1=111A+tX II1=111A I + t  I X  III ~or t > 0 we may ass.me 
A, X > 0. As the ranges of the hermitian operators A, X are orthogonal, the set 

of eigenvalues of A + t X  is the union of the set (sn(A)),>0 of eigenvalues of A 

and the set (tsn(X)),>0 of eigenvalues of tX. Hence 

II A + t x  IIc~=ll s ( A ) +  ~s(X)l ie  

where s(A) and s(X) are disjointly supported positive sequences whose decreasing 

rearrangement are (sn(A))n>o and (Sn(X)),>O respectively. Let ,4 C N be the 

support of s(A). Let L E ReSs(A) C Ss(A) C E*. Then L + and 1.4L + G E* 

because E* is a Banach lattice and L + belongs to Ss(A) because 

II s(A) liE=< L,s(A)  >--< L + - L - , s ( A )  >_<< L+,s(A) >_<][ s(A) lIE. 

1.4L + also belongs to So(A). As E* has a strictly increasing norm, 1 =H L+ [[= 

I] 1.4 L+ II implies L + = 1.4L +. By Lemmas II.2, II.3, 

G.(A)(s(X)) = s . p  < r , s ( X )  > =  s . p  < L + , s ( X )  > 
L E R e  •,( A ) L E R e  S,(A) 

which proves the first claim because < L +, s (X)  > = <  1.aL +, s (X)  >= O. By the 

first assertion and Lemma II.2, for every X G CE such that QXQ = X 

sup Re < t, X > =  0 
lG,.qA 

which implies < £, X > =  0 for every £ E SA. 

LEMMA II.5: Let E be a symmetric sequence space and let A >_ O, A E CE, 

A ~ O. Then 

(i) w ~ aA, W e 7'(A), ~ > 0. 
(ii) If  E is separable 

V~ E SA, P£P >_ 0 
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where P is the projection on (ker A) J-. 

Proof: (i) For every B 6 ReCE and t 6 ReSA, t 6 R 

II A Jr itB I1_>1< e , a  Jr itB >1=111A II -Fit < t , B  >1_>11 A II. 

Let R 6 Re B(H).  Then 

II A + itA1/2RA1/2 lice =11 All2( Id + itR) A~/* IIc~ 

-<11 A an 2 I1%c2~ II Id + i tR liB(H) 

=11 A lice (1 + t 2 II R Ilk(m) ~/2 

hence GA(iA~/ZRA*/2) = 0 ; as in the proof of Lemma II.3(iii) 

( I L l )  V~ 6 SA, < e, A1/2RA1/2 >E R. 

o n  the other h = d ,  for R >_ 0 and 0 <_ t <11 n Ill'H), 

l[ A - tA1/2RA1/2 lice =11 A*/2( Id - tR) A1/2 lice 

<-II Aa/2 2 I1%(~) II I d  - t R  lIB(H) 

-<11 A lice 

hence GA(-AI/~nA1/~) _< 0 ; by (II.i) and Lemma II.2(i), 

0 > sup Re < £ , -A1/2RA 1/2 > =  sup - < ~, A*/2RA1/2 > 
IESA IESA 

hence for every ~ 6 SA, < ~, AI/2RA 1/2 > >  0. Let now lr 6 7~(A). Every B 6 

Re CE such that B = 7rBrr can be written as 

B = A1/2(A-~/27rBTrA-1/2)A ~/2 and R = A-1/2~rBTrA -~/2 6 R e B ( H ) .  

This proves the claim. (ii) is a consequence of (i) and (I.1). 

LEMMA II.6: Let E be a symmetric sequence space and let A # O, A 6 CEO~, 

B 6 CE(2). Then 

(i) 9 II AII GA(B) = GA.A(A*B + B'A). 

(ii) sup II A II Re < e , n  > =  sup ne  < At, B > .  
tESA tERe SA*A 
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A A 
(iii) & = , , R e & . A  = ,7=. , ,SA.A.  

II A II I1•11 

(iv) Let A • ReCE¢,), P be the projection on (ker A) ±. Then 

Vg • SA, l = PiP. 

Proof." (i) For t • R, 

II A + t B  =11 (A*+tB*)(A+tB) IIc =ll A*A+t(A*B+B*A)+ t2B*B IIc . 

The claim follows from Lemma II.2(ii). 

(ii) The claim follows from (i) and Lemmas II.2(i), II.3(ii) because 

GA.A(A*B+B*A)= sup R e < g , A * B + B * A >  
tESA.A 

= sup < i, A*B + B*A > 
tERe 5a* a 

= 2  sup R e < / , A * B >  
tERe Sa* a 

= 2 sup Re < AI, B > .  
tERe 5 A* a 

(iii) By the definitions and Lemma II.3(ii) 

A A 
11 A ][ ResA°A c [ - ~ I S A . A  c SA. 

All these sets are bounded, w*-closed and convex in the dual space of CE(2). 

A and SA are the same in CE(2) ; by the By (ii) the polar sets of [-~-~ReSA*A 
A bipolar theorem SA lies in the closed convex hull of ]-[-~-ffReSA*A and {0}, hence 

SA = ]I~HReSA* A. 
(iv) (iii) implies £ = Pg for every l • SA ; by Lemma II.3(ii) g* • SA hence 

g* = Pg*, £ = £P, which proves the claim. 

Though the next results are not used in the proof of Theorem 0 we think they 

are interesting in themselves. 

PROPOSITION 11.7: Let E be a separable symmetric sequence space, let A ~ 0, 

A E Re CE. Let P be the projection on (ker A) ± and P + Q = Id. Then for every 

E SA, 

(i) g = P g P  + QgQ ; 
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(ii) irE* has a strictly increasing norm ! = PiP.  

/ f  A _> 0 or more generally i f  A = A + - A -  where the spectra of A +, A -  have 

at most {0} in common 

(iii) P i P  E Re SA 

(iv) A l  = lA.  

Proof: Note that S A C  C~ C B(H).  (i) implies (ii) by Lemma II.4. 

(a) If (i) holds true for A _> 0, it also holds for A E Re CE : indeed for 

A E ReCE let A = U [ A [ be a polar decomposition. Then U E ReCE,  

U and I A I commute in B(H)  hence U commutes with the projection P on 

(ker A) ± = (ker [ A [)±, by JR, Theorem 12.22]. By Lemma II.3(v), SA = USIA I. 

As (i) holds true for every t E SIA I it also holds true for every l E SA. 

(b) We now prove (iii), (iv), (i) for A _> 0:  let A >_ 0, / E SA, then P i P  E SA 

by Lemma II.3(i) and P i P  >_ 0 by Lemma II.5 which implies (iii). As A _> 0, 

A x/2 E CE(2); for every ~ E SA, A1/2~ E SA~12; note that SA1/2 C C~(2) C B(H) .  

By Lemma II.6(iv) applied to A 1/2, PA1/2iP = A1/21, and by Lemma II.5 applied 

to A 1/2, pA1/2IP >_ O. In particular A1/21 = IA 1/2 which implies (iv). A and 

l commute in B(H)  hence ~ commutes with P and Q, PIQ = QIP = O, which 

implies (i). 

(c) It remains to prove (iii) and (iv) when the spectra of A +, A -  have at most 

{0} in common. Let A = U [ A I. Then U = ~([ A [) where ~ is a measurable 

function on the spectrum of[ A [, with values in { + 1 , - 1 } .  As (iv) holds true for 

[ A [ every ~' E SIAI satisfies [ A [~' = £' I A [ hence Vl'  = I 'U by [R, 12.24]. As 

(iii) holds true for [ A [, P l ' P  E ReSIA [. By Lemma II.3(v) every l E SA can be 

written as ~ = U~', f: E SIAl. As 

P U g P  = P g U P  = PI 'PU -- UPIIP 

(iii) is proved for A. As 

A l =  U I A I U I ' =  U IA  [l 'U = Ug I A I U = l A  

(iv) is proved for A. 

Remark II.8: Assertions (iii) and (iv) in the above proposition cannot be ex- 

tended to all A E ReCE for E = E (2) = c0 : let H = / ~ ,  C °~ = C°°(B(l~)); 

let 
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A e R e C  °° and II A Ilco~= 1. 

Let 

Then 

= 1/2 ( 1 
- 1  

II e IIc,= 1, e ~ SA, ' ¢ ReSA, A' # CA. 
Also note that, for 

]A + itB [2= (1 + t2)Id + 2it k(01 

'=1/2(11 ~_~)=1/2(10 ?1)+1/2i(0._ i ; ) "  

vt ~ R, II A + itW I1~-= 1 + 9 I t I +t 2 # 1 + o(t) 

which is not surprising in view of Lemma II.3(iii). This last example was consid- 

ered in [GTJ, p. 184]. 

PROPOSITION II.9: Let E be a separable symmetric sequence space. Let 1 < 

p < oo. Let A >_ O, A E CEcp~, A # O. Then 

SA = \11 A II] SAp. 

Proof." For p = 2, Lemma II.6(iii) implies the result. We now assume 

II A IIc~p~- 1. Obviously AV-XSap C SA hence by the Hahn-Banach theorem 

we only have to prove that for every B E CECp~ 

(/1.1) sup Re < ~, B > =  sup Re < ~, B > .  
tESA t E A n -  1 SAP 

By Lemma II.5 and Proposition ILL every ~ E SA satisfies (i) e = PeP, (ii) ~ > 0, 
(iii) A~ = CA, where P is the projection on (ker A) ±. 

Let A = ~ j > o  AjPj where the ~j's are the distinct eigenvalues of A, counted 

according to their decreasing order for j _> 1, A0 = O, and the Pj 's  are the 

orthogonal projections on the corresponding eigenspaces. Then f o r ,  E SA, B E 

CE(p)  , 

Re < / , B  > = <  e, aeB  > = <  ~, ~ PiaeB t'i > = <  ~, ~ PjReB t'i > 
j>0 j_>l 
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because ePj = Pie (j _> 0). 
As E(t ' ) is  separable II E j > I  P j R e B P j  -E~f=i  P j R e B P j  licE(,)--, 0 (N ---} 

+oo) by (I.1). Hence it is enough to prove (II.1) for B E ReCE(,) such that 

AB = BA and II A-aB  118(n) is finite. Let 0 < S0 < 1 be such that 

tl/4 o IIA-~BIIB(H)<I ; V O < t < t o ,  A + t B > O .  

(The problem is actually to show that SA = At'-ISA, in E*.) Let 

For 0 < t < to, 

(1 + =)t' = ~ - -~k= k ( 1 = 1 < 1 ) .  
k>0 

I A + t B  Iv= (A+tB) v = At '(Id+tA-IB) v = AV+tpAt'-aB+A t" E aktk(A-1B)k 
k>_2 

hence 

lim 
t -*0+ 

II1 A + tB It'llc~ - I I  At' IIc~ II At' + tpAt'-*B lice - II  At" IIc~ 
= lim 

t -*0+ 

II A + tB II~E(, ) - II A II~E(, ) 
= lira 

t -*0+ t 

By Lemma II.2, pGA(B) = pGA,(At'-IB), which proves (II.1) for such a B. 

Comments on Part II: 

(1) It has been shown in the proof of Lemma 11.5 that for every A >_ 0 in CE, every 

~r E ~°(A) and every g E SA, 7rg~r E Re C~. Lemma II.6(iii) gives another proof of 

this fact: indeed A 1/2 E CE¢2), Aa/2g E SA,I2 hence there exists gl E ReSA such 

that A1/2£ = A1/2£1; it implies lrg = 7ffa, lr£Tr = 71"£17r and lrgllr E ReC~.  

By Proposition II.7, it follows that g E Re C [  if E is separable and p-convex 

for a p > 1. By Lemma II.3(iii) and [TJ ] the separability assumption on E is not 

necessary: N. Tomczak proves that if E is p-convex (p > 1), A > 0, A, B E Re CE 

I I A P <  P <  p IIc~-II IIc~ +2P It It'll B lit', IIc~_ll A + itB A 

in particular 

II A + itB I1~ =11 A IIPcE +o(t). 
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(2) Let E be separable, let A _> 0 in CE¢2). Then Lemmas IL5, II.6(iii) and the 

Cauchy-Schwarz inequality imply that for every t E SA, 

VB E ReCE(2), [< t , B  >[_<< t ' , B  2 >1/2 

where t = At', t' E SA2. This implies Theorem 0 for the linear form T = t : 

CE(2) ~ C. 

III.  T h e  s t u d y  o f  [[ A + itB licE(2) a r o u n d  t = 0 up  to  t h e  s e c o n d  order  

a n d  t h e  set  I(A) 

We now study ][ A + itB ]ICE(2) around t = 0 up to the second order for A _> 0 

and B hermitian. 

Note first that for A E Re CE and every X E CE such that X = QXQ (Q 

being the projection on ker A) 

II a + i t x  + IIo~. I1~,~(,,=11 A= t=X= 

We now consider operators B in Re CE such that QBQ = 0. In view of the 

following key result we will consider operators B with a special form. 

LEMMA I I I . l :  Let E be a syzmnetric sequence space, A E Re CE, R E Re B( H). 

Then t'or t E R, 

(i) II A lice =11 a + i t (AR + RA) - t2(RAR + R2A~ AR2 ) lice +o(t2). 
(ii) [[ A + i t(AR + RA) lice =[[ A + t2(RAR + R'A+AR=) lice +o(t2) • 2 

Proof: This is an obvious consequence of the fact that 

II .4 IIcE=II ""RA~"R liCE, 

and 

11 a + it(AR + RA) IIc~ =11 e-itR( A + it(AR + RA))e -itR IIc~ 

II j , R  _ (Id + itR - ~ R  2) HB(H)= o(t2). 

Hence it is natural to consider operators B -- AR + RA. Using the results of 

part II we get the following technical lemma : 
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LEMMA 111.2: Let E be a symmetric sequence space and let A > 0 • CE(~). Let 

• ReSA and letg = Ag' where P = Pg'P • ReSA2 as in lemma 11.6. Then for 

every n • Re B ( H )  and every 7r • T'(A) 

R 2 A + A R  2 
< zgTr, R A R  + 2 > < <  r*'Tr, ( A R  + RA)  2 > .  

This lemma is obvious in the C 2p case where SA = {A2P-'} ,  SA, = {A 2p-2} 

for A > 0, ]] A Hc2p= 1. 

Proof: Lemma II.6 implies the existence of £1 ; as g • ReSA, A£ I = glA (as 

linear forms on CEO)) and g = PgP. For r • ~(A),  

< 7rg'Tr, ( A R  + RA)  2 > =< ~rg'~r, A R A R  + R A R A  + A R 2 A  + R A 2 R  > 

R2 A + A R  2 
= 2 < ~r~r, R A R  > + < ~rgr, > 

2 
+ < Irglr, R A 2 R  > . 

As A > O, P ( A )  = ~O(A2) and by lemma II.5, re~  _> 0, ~e'~ _> 0. Hence 

< 7rgTr, R A R  >> 0 and < ~rP~r, R A 2 R  > >  0, which proves the claim. 

The above lemmas motivate the following definitions : 

Definition I11.3: Let E be a symmetric sequence space and let A • Re CE. Let 

I (A)  = { A R  + R A  [ R • Re B(H)}  C Re CE. 

For any projection p commuting with A 

I (A ,p )  = ( B  e I (A)  [B  = pBp} = {AR  + R A I R  • R e B ( H ) ,  R = pRp}.  

These subsets are reasonably big in Re CE, under suitable conditions on A : 

LEMMA III.4: Let E be a symmetric sequence space. Let A E Re CE be such 

that the spectra of A +, A -  have at most {0} in common. Then 

(i) if the spectrum of A is a finite set 

Re CE = I (A)  @ Q(Re CE)Q, 

(ii) for every ,r E P (A)  

+ Q)Re CE(  + Q) = X(A, + 0,) Q(Re CE)O,, 
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(iii) if E is separable (respectively if  E = F* where F is separable) 

U I (A,~r+Q}~Q(ReCE)Q and I(A)(gQ(ReCE)Q 

are norm dense (respectively a(CE, CF) dense) in Re CE. 

Proof." (i) is a consequence of (ii) for ~r = P. 

(ii) Let A = ~"~j>0 AJPi where the Ai's are the distinct eigenvalues of A, the Pj ' s  

are the pairwise orthogonal eigenprojections of A, with P0 = Q, Y]1>1 PJ = P ; 

for j > 1 the Aj's are counted according to the decreasing order of the [ A t ['s. 

For every Ir 6 P(A)  there exists n > 1 such that 

Let B E Re CE be such that 

B = (~ + Q)B(~ + Q) = 

n 

j=l 

j=o o<_i,1<. 

The assumption on A implies )q + A i # 0 excepted if i = j = O. Hence 

B = A R + R A  + QBQ 

where 

R = E E (:~ + ~j)-'P~BP~ 
O<_i,j <n  

(i,j) • (0,0) 

hence R = (~ + Q)R(~ + O). 
(iii) Let (~r,)n>l be an increasing sequence in P(A)  such that P = V,-~r,. Then 

by (I.1) [.J, {(Tr, + Q)ReCE(rn + Q)} is norm dense in CE if E is separable 

(respectively a(CE, Ce) dense if E = F* and F is separable). Hence (ii) impfies 

(iii). 

We will use the technical Lemma III.2 in the proof of Theorem 0. However 

the following proposition is more significant and will give a more natural proof 

in the smooth case (see Lemma IV.3) : 
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PROPOSITION III.5: Let E be a symmetric sequence space and let A > 0 E CE(2) 

be such tha~ the spectrum of A is a finite set. Then 

2 < A s V B  6 Re CE(=) , [[ A + itB [[c~(,) -[[ + 2tSB2 Her + O ( t 2 )  • 

Proof." Let B E Re CE(2). By Lemma III.4(i), B = AR + RA + X where R E 

ReB(H)  and X = QXQ E ReCE(2). As in Lemma III.1 we get 
2 II A + itB IIc,~(,~ 

A + i t(AR + RA) + i tX Ill-.c,, 
e-itR(A + i t(AR + RA) + itX)e -itR I1~=) 

R 2 A + AR 2 
A + i tX  + t2(RX + X R  + RAR + ) licE(2 +o(t~) 

2 

A s + tS(X 2 + 2Re A(RX + X R  + RAR  + 

A 2 [[cE 

R 2 A + AR 2 
2 )llc~ + o ( t  s )  

+ t  s sup R e < t ' , X  2 + 2 A ( R X + X R + R A R +  
t '  ERe "qA 

+ o(?) 

= 11 A +o(t). 

R 2 A + AR 2 

2 ) >  

By Lemma II.3, ReSA = SA ; as At' E SA for g' E ReSA2 we get At' = g'A = 

P A t ' P  for t '  E Re SA 2 , in particular 

< g, A ( R X  + x n )  > =  0 

and by Lemma III.2 applied to 7r = P E P(A) and t = At' 

II A + i tB  II~,E(,) 

-<11 As 

=11 A2 

-<11A s 

=11 A2 

-<11 A= 

IIc~ + t  2 sup < g ' , x  2 + 2P(RA + AR)2P > +o(t 2) 
t '  f i r e  S A 2 

IIc~ + ?  sup < P t ' P + Q t ' Q , X  2 + 2 ( R A + A R )  2 > +o(t 2) 
f '  ERe S a 2 

IIc~ + 2 t  s s u p  < P g ' P + O t ' Q , x  2 + ( R A + A R )  2 > + o ( t  s )  
l' ERe S a 

Hc~ + 2t2 sup < Pt 'P  + Qt'Q, (RA + AR + X) 2 > +o(t s) 
t ' E R e S A 2  

+ 27B = IIc, +o(?) 

because, by Lemma II.3, for every g' E Re,Sa~, Pg'P and P E P  + Qg'Q E ReSA2. 
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Remark III.6: 

by the following example [GTJ]: let 

00) 
Then 
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The factor 2 in proposition III.5 is the best possible, as it is shown 

[ A + i t B [ 2  ( l + t 2 l b [  2 itb ) 
= - i tb  t 2 [b [2 , 

1 t2 [2 1 t 12 [2 [ [A+i tBl l~oo = ~ +  [b +~X/  + 4t2[b = 1 + 2 t  2 [b  +o(t2), 

][ A 2 + 2 7 B  2 ] [c -  = a + 2 ?  I b 12 . 

Note that B = AB + BA ; Sa = SA* = {A} = {P).  With the notation of Lemma 

III.2 

< g~, RA2R > = <  A, RAR > =  0. 

Comments on Part III: 

(1) In the finite dimensional case alaother proof of Proposition III.5 (or a variant 

of it for II A + i t B  - t2C licE(,), c • CE(,)) goes as follows (this was our original 

proof): let A • ReCE, let M(t) =l A + itB IS= A 2 + i t ( A B - B A ) + t 2 B 2 ;  

by perturbation theory [g, Chapter II.6] the eigenvalues (Aj(t))j=0 N-1 of the 

hermitian operator M(t) (t • R) are analytic around t = 0 and there exists an 

analytic determination of a basis of orthonormal eigenvectors (vi(t))N__~ x around 
j=N-1  t = 0. This does not imply that the decreasing rearrangement (si(t))j= 0 of 

(Ai(t))~=0 N-1 is analytic around t = 0, a counterexample can be found in Remark 

II.8, where s0(t) is not analytic. 

We denote by ()~i)~=~ 1 the eigenvalues of A. 

The equation 

M(t)vi(t) = )~i(t)vi(t) 

allows the computation of an order 2 expansion of Ai(t ) around t = 0. For A _> 0, 

using the fact that vi(0 ) is both an eigenvector for (A 2,)~i(0) = A~) and for 

(A, Ai) one gets )~i(t) = )~i(0) + bt 2 + o(t2). Using the fact that 

-I<~A~-~J <i  
- A~+A i - 
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for distinct eigenvalues Ai, Aj of A and the computation of b one gets 

0 < Aj(t) ~ <  A 2 + 2t2B 2 , vj(0) @ vj(O) > +O(~2). 

Hence for 0 < n < N - 1 

:  i(t) _< < A s + 2t2B2,vi (o)® v (o) > +o(t  
0 jE], ted, 

where J~ C {O, . . . ,N  - 1} and cardinM Jt = n +  1. Hence for every e > 0 

B n n 

si(t) <_ ~ s/( A2 + 2t2B 2) +o(t 2) <_ ~ s)( A2 + 2t~B 2 + t2eId) 
o o o 

for t small enough, and by standard arguments IS, Theorem 1.9] 

Ill A + i t B  1211c~<11A s +2t~B 2 IIc~ +0(52). 

(2) In view of Proposition III.5 and Tomczak inequality (2) IT J, Proposition 1] 

the following question is natural: does there exists a constant K > 2 such that 

for A _> 0, A, B E Re CE¢2~ 

I[ A + iB + KB2 llc~ ? I1~E¢2)<11 A 2 

We can give a positive answer in C ~° = K(H) and in C 4 with K = 2, in C 6 with 

K -- ~/5 (K = 2 if B > 0). We sketch the proofs. In C ~ we must prove 

s0(A 2 + i(AB - BA) + B 2) <_ s0(A 2 + 2B2). 

By the proof of [T J, Proposition 1] it is enough to prove it for H = £~ hence for 

o) 
A =  ~2 ' 0_<A2_<,kl. 

In this case the above eigenvalues can be exactly computed, the comparison is 

not so easy but it can be done. 

In C 4 we get (~" denotes the usual trace) 

II A + iB ]1~4= r((A 2 + B2) 2) + 2r(A2B 2) - 2r((AB)2). 
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A s A _ > 0  

hence 
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r ( (AB)  2) = r ( A I / 2 B A B A  ~/2) >_ O, 

[[ A + iB  I1~,< r((A 2 + B2) 2) + 2r((A 2 + B~)B ~) + r ( B ' )  =[[ A 2 + 2B ~ [[~,. 

The computation in C o is more complicated but follows the same idea. It uses 

the fact that for C = A1/2BA 1/2, 

0 _<][ A C  - C A  ][~= 2([[ AS/2BA 1/2 [[~ - [[ A B A  [[~) 

hence 

- r ( A 2 (  A B  - BA)  2) =]l A ( A B  - BA)  

=H A2B H~ + H A B A  If 2 - 2  I[ AS/2BAal2 I[22- < v(A4B2) • 

IV .  T h e  factorizat ion t h e o r e m  for operators:  C(~ ) -~ 7~ 

7-I denotes a Hilhert space. 

De~nition IV.l:  Let E be a symmetric sequence space and let T : CE(2) ~ TI 

be a bounded linear operator. T is K-factorizable if there exists a bounded linear 

form / on CE such that II / II = 1 and 

x*x + zx* >1/2 . 
Vx • CE(,) ]l T(x) l[<_ g l[ T II< f ,  2 

Note that f is necessarily a positive linear form. The aim of this part is to prove 

Theorem 0 which we rewrite as follows : 

THEOREM IV.2: Let E be a symmetric sequence space such that E* has a strictly 

Then every bounded linear operator T: CE(2 ) ~ 7"l is 2V~ increasing norm. 

factorizable. 

We first give the core of the proof, in the finite dimensional case (Corollary 

IV.4). The reduction steps are standard and will be given afterwards in Lemmas 

IV.6, IV.7. 
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LEMMA IV.3: Let E be a symmetric sequence space such that E* has a strictly 

increasing norm. Let T: CE(2) --} Tl be a norm one operator attaining its norm 

at A > 0, [[ A Hc~(,)= 1. Let P be the projection on (ker A) J-, P + Q = Id. 

Then 

(i) 
(ii) 

For every X 6 Re CEo) such that X = QXQ, T(X)  = O. 

Let £' 6 ReSA, be such that £' = P t 'P  and .4£' = Re T*T(A), which 

is possible by/emma II.6. Then for every" Ir 6 P(A) and for every B 6 

~(A, ~ + Q) 

(~v.1) II T( B ) 112< 2 < t', B 2 >.  

(iii) / f  the spectrum of A is a finite set or if  E / s  separable, (IV.l) holds true 

for every B 6 Re CE(2 ). 

Proof: Note that 

1 =11 T(A)ll2=< T*T(A), A > = <  ReT*T(A), A > 

hence ReT*T(A) 6 ReSA. Let B 6 ReCE(~) and let e be a random variable such 

that P(e = +1) = P(e = -1 )  = 1/2. Then 

II T(A) I[ 2 +t 2 II T(B) 112= EI[ T(A) + eitT(B) I[ 2 
(IV.2) < E II A + ~itB I1~(,)=11 A + itB I1~(,) • 

We first mention a transparent proof of (iii) when E is smooth and the spectrum 

of A _> 0 is a finite set: by Proposition III.5, for B 6 Re CE(2 ) 

I Id + itB I1~(=) -<11 A2 + 2t2B2 IIc~ +o(t =) 
= 1 + 2 t  2 < g ' ,B 2 > +o(t 2) 

where Re SA2 = SA, = {~'} by the smoothness assumption on E (by [A], CE is 

smooth if and only if E is smooth). 

As I] T(A) H2= 1, (IV.2) implies Jl T(B) 112< 2 < g',B 2 >.  

We now give a general proof when E is not assumed to be smooth. 

(i) Let X = QXQ E Re CE(~). By Lemma II.4, 

II A + i tX + t=x  ~ I lc .= 1 + o(t =) I1~,~(,) =11 A = 

hence (IV.2) implies T(X)  = O. 
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(ii) Let B = AR + RA E I(A), and let 

R2 A + AR 2 
S = RAR + 

2 
By Lemma III.1, 

II A t2S + it( AR + RA ) 2 - llc~(,~ = 1 + o(t 2) 

hence by (IV.2) applied to A - t2S and AR + RA 

II T i n  - t2S) II 2 + t2 II T (AR + RA) 112< 1 + o(t 2) 

H T(A) I12 -2t2Re < T(A) ,T(S)  > +t 2 II T (AR + RA) II 2 +o(t 2) <_ 1 + o(t 2) 

H T(AR + RA) H2_< 2Re < T*T(A), S > =  2 < ReT*T(A),  S > .  

By Lemma III.2 applied to t = ReT*T(A) E ReSA 

II T(AR + RA) I12< 2 < ~',(AR + RA) ~ > 

for every AR+ RA E I(A, ~r+Q) and every ~r 6 :P(A). (Note that (r+Q)~(~r+Q) = 

(iii) Lemma III.4 and (i), (ii) imply (IV.l) for every B 6 ReCE(,) such that 

B = (Tr + Q)B(r + Q) for a ~r 6 :P(A). This ends the proof if P E P(A), i.e. if 

the spectrum of A is a finite set. If E is separable, by Lemma III.4 again, (IV.l) 

holds true for a norm dense subset of Re CE(2 ) hence for every B E Re CE(2) : 

indeed 

II B 2 - B ~  IIc,~ -<11 B 2 - B B ,  IIc~ + ]l B B ,  - B~ lice 
(w.3) 

< (11 B I1~,,, + I1 B,, I1o~,~,) IIB - B,, II~,~, 

by [S, Theorem 2.8], hence II B2 - B~ l l c s ~  0 if II B - B .  11%¢2~--* 0 (n ~ oo). 

COROLLARY IV.4: Let E be a symmetric sequence space such that E* has a 

strictly increasing norm. For n >_ 1, let H ,  be a Hilbert space with dimension 

n. Let T: CE¢2~(B(H,)) --* 7"/ be a bounded linear operator. Then T is 2V~- 

factorizable. 

Proof." We may assume II T II= 1. As CE¢2~(B(H,)) is finite dimensional T 

attains its norm at A, ]1 A ]]~¢,~ = 1 and the spectrum of A is a finite set, hence 

Lemma IV.3 and the subsequent Lemma IV.5 imply the claim. 

By Lemma IV.3 the statement of the corollary still holds true for an infinite 

dimensional separable Hilbert space H if E is separable and E (2) reflexive, which 

implies that CF.¢2~ (B(H)) is reflexive. 
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LEMMA IV.5 ([H, Appendix]): Let E be a symmetric sequence space and let 

K > O. Let T: CE¢~ ~ 7-l be a bounded linear operator which attains its norm 

at A E C~(~), II A II = 1. Let A = Uo I A [ be a polar decomposition of A. We 

assume that there exists f E C~ with II f II = 1 such that 

Vx E ReCE(2), II T(U0x)II_< K II T II< f ,  x2 >1/2.  

Then the operator x ~ T(Uoz) is v~K-factorizable and T is 2K factorizable. 

Proof." Let y 6 CE¢2), then y = Re y + i Im y and 

(Rey) 2 + (Imy) 2 = l l2(y*y + yy*). 

By assumption 

II T(Uoy)II -<11 T(UoRey)II + II T(UoImy)II 
_< Vh(II T(UoRey)II 2 + II T(UoI~u)112) 1/2 

< v~K II T I1< f, u*u + yy* >1/2 
- -  2 " 

Let z E CE¢~), hence x = Uoy where y = U;z,  and 

f + VofU;, z*z + xz* >112 I1 T(x) II -< J~K  II T II< 2 

~o z*z + zz* >I12 
< 2 K I I T I [ <  11~11, 2 

where 
f "4- UofU~ 

~ =  2 
LEMMA IV.6: Let E be a symmetric sequence space. The set of K-factorizable 

operators: CE(~ ~ 7-( with norm less than one is closed for the topology of strong 

convergence. 

Proof." Let (Ta) he a net of operators: CE(2 ) --, 7~, strongly converging to T, 

such that IIT [1= 1, II Ta I[< 1 and such that there exists (]a),  satisfying 

(i) II f,,, l ie;= 1 ; 

(ii) vo,, vx e C'E,,), II T,,(x) I1_< K II To I1< fa, ""+'~" >1/2 2 

Let f he a w*-limit of (f~). Then 

II T(~) II = ~m II T~(~) I1_< K < f, ~*~ + ~ *  >~/2 
2 
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LEMMA IV.7: Let E be a symmetric sequence space. Then every norm one 

operator T : CE ~ 7-I lies in the strung closure of the set ~'E of operators t : 

CE -* 9/ of  norm less than one for which there exists a hermitian projection 

P : H ~ H with tinite dimensional range Hn such that 

Vz 6 CE, t(x) = t (PxP) .  

Such a t 6 .TE can be identified with an operator: CE(B(H. ) )  -4 7"l. 

Proof" Let (P . ) .> ,  be an increasing sequence of hermitian projections: H ~ H 

with finite dimensional ranges such that V .  P -  = IdH. For every T : CE ~ :H 

let T .  be defined by 

Vx 6 CE, T . (x )  = T ( P . x P . ) .  

If E is separable i] x - P.xP. ][c~--* 0 (n ~ +oo) for every x 6 CE by (I.1) 

hence (T.)._>I strongly converges to T, and li T. il_<li T il- 
If E is not separable, E = F* where F is a separable symmetric sequence space, 

and CE = C~. The space B(C~ --, X) of bounded linear operators: C~ ~ X 

is the dual space of the projective tensor product C ~ 9 / a n d  the bidual of the 

space CF69i  of compact operators: C;- ~ H. Hence the unit ball of B(C~ ~ 7"t) 

is the w*-closure (and the strong closure) of the unit ball of CF~gt.  The last unit 

ball is the norm closure of norm less than one operators t : CE ---* 7"t such that  

t*: 7"[ ~ CF has a finite dimensional range. For such a t there exist finite 

sequences (zi)i<k 6 CF and (ei)i<k 6 7"~ such that 

k 

V. • Cs, t(.) = ~ < z,,. > e,. 
i=1 

As F is separable, II z~ - P.z,P. tic~+ 0 (n -, oo, i _< ~) by (I.I), hence 

Hence the unit ball of CF~7"/ is the norm closure of its intersection with JrE, 

which ends the proof. 

As we already mentioned, Corollary IV.4, Lemmas IV.6 and IV.7 imply The- 

orem IV.2. 
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Comments on Part IV: 
In the statement of Theorem IV.2 the Hilbert space T/can  be replaced by any 

Banach space X whose modulus of uniform convexity satisfies 6x(e) > Ke 2 

(e > 0), if moreover CE(~) or X* has the h-bounded approximation property. 

The factorization constant then depends on K and ~. The first assumption on X 

implies that X is reflexive [LT, Proposition 1.e.3]. The approximation property 

assumption ensures the validity of Lemma IV.7 with X instead of 7~ [DU]. By 

the assumption on X, 

w , y  • x ,  II : II 2 -t-K' II y II E II • + II 2 

where K '  is a constant depending on K [B, part V, Chap. 1.3, Lemma 2]. This 

implies an obvious modification in (IV.2), namely ][ T(A) [[2 + g , t 2  [[ T(B) 112<_ 
E [[ T(A) + eitT(B) [[2 and the rest of the proof of Lemma IV.3 is the same. 

However as X has cotype 2 [LT, Theorem 1.e.16] this generalized statement is 

also a consequence of Theorem IV.2, of [P2, Theorem 4.1] and of [T J, Theorem 1]: 

indeed E (2) has a dual or predual space which is a 2-concave symmetric sequence 

space, hence by [T J] C~(2) has cotype 2 ; by [P2] every T: CE(2) --* X, with a 

finite dimensional range, factors through a Hilbert space. 

V. General izat ion to LE(M,r) spaces 

The aim of this part is to prove Theorem V.5 below which is a version of Theorem 

0 for LE(M, r) spaces. 

We first give definitions and properties of LE(M, r) spaces. Then we give the 

analogues of the main results of parts II and III: most proofs can be transcribed, 

except for Lemma III.4 (see Lemma V.4). Then we state Theorem V.5 and prove 

it in a particular case, we end by reducing the general case to this particular one. 

Definition V.O: Let ~ = [0, 1] or [0, ~ [  equipped with the a-algebra of Borel sets 

and the Lebesgue measure. A symmetric function space E is a Banach lattice of 

functions on ~ such that 

L°°[0,1] C E C LI[0,1I if ~ = [0,11, 

L°¢[0, oo] N Ll[0,oo[C E C L°°[0,oo[+L'[0,oo[ if ft = [0,oo[, 

and such that equidistributed functions have the same norm in E. Moreover it is 

assumed either that E is a-order continuous or E has the Fatou property, i.e. 

(1) f~ T f a.s.; sup I I f ,  liE< c¢ ~ f E E, II f lie = lira II f ,  liE. 
n n 
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Note that E and E (2) are simultaneously symmetric function spaces ; they are 

st-order continuous or have the Fatou property simultaneously. 

This setting is the analogue of symmetric sequence spaces (a symmetric se- 

quence space is separable if and only if it is or-order continuous). However a 

symmetric function space with the Fatou property is not a dual space in general 

(e.g. E = L 1) (though this is true for a symmetric sequence space) ; if moreover 

E is p-convex (p > 1) E is a dual space (see Lemma V.6). 

Also note that if E is a-order continuous E* is a symmetric function space 

[LT, p. 29]. 

Definition V.0 is slightly more restrictive than the definition of a rearrangement 

invariant space in [LT, Definition 2al]. By the discussion in [LT, p. 118] the two 

definitions agree on [0,1] and Definition V.0 only excludes the case where E is a r. 

i. space on [0, co[ which is not isomorphic to L°°[0, co[ though 1[0,1]E = L°°[0 1] 

isomorphically. 

In this chapter (M, r)  will be a semifinite yon Neumann algebra M of operators 

on a Hilbert space H, equipped with a faithful semi-finite normal trace r on 

M ([T, V.2, Definition 2.1 and Theorem 2.15]). Let M denote the space of 

measurable operators on H with respect to (M, r),  i.e. (see e.g. [FK, Definition 

1.2]) the space of densely defined closed operators A affiliated with M such that 

r ( £ ~ , + o o ) )  --* 0 as A ~ + o o  

where E is the spectral measure of [ A I • Note that .~/is the closure of M with re- 

spect to the measure topology (for which a fundamental system of neighborhoods 

of 0 is, for e, 6 > 0, 

V(e,6) = {A e ~I I 3P = p2 • M [I A P  IIM< e, r(Id- P) < 5}). 

Let A • .~1 r. The s th singular number of A is (see e.g. [FK, Definition 2.1, 

Proposition 2.2, Lemma 2.5) 

v,(A) = inf{ll AP IIMI e = e2,  r ( I d -  P )  < s}, s > 0 

hence p,(A) = v,(A*) = P,(I A I). If A > 0 and £ denotes the spectral measure 

of A, 

v.(A) = inf{ ,  >_ 0 I r(£(..oo)) _< ,}. 

We denote by p(A) the function ]0, eo[-+ R, s --+ po(A). 
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Definition V.I: Let E be a symmetric function space and let (M, r) be as above. 

The symmetric space LE(M, r) is the space of operators A E M such that p(A) 
lies in E and 

II A IIL (M,,)=II t ' (A) l iE.  

LE(M, r) is a Banaca spa¢  (see e.g. [XI]). 
Note that if M = B(H), if r is the usual trace then M = hT/" ; if moreover E is 

a symmetric sequence space LE(M,r) = CE. Also note that LLoo(M,r) = M ; 

LLp(M,r) is denoted by LP(M,v) for 1 < p < oo. 

An operator A E M has a r-finite support if r (P )  < +oo where P is the 

support projection of A, i.e. the smallest projection P such that  AP = A. 

If r(Id) = a < oo, then for every A E M, #(A) is a function on [0, a]. Then 

M C LE(M, r) C LI(M, r)  

hence LE(M, r) is norm dense in LI(M, r). In general 

M NLI(M,r)  C LE(M,r) C M + LI(M,r). 

If E is a-order continuous, then MNL1(M, r) is norm dense in LE(M, r) by [Xl, 

Lemma 4.5]. If moreover r(Id) is finite, M is norm dense in LE(M, r). 

Hermitian and positive operators are well defined in h~/, hence in LE(M, r). 

Hermitian and positive bounded linear forms on LE(M, r) are defined by duality; 

if ~ E L*E(M, r) and R E M, Re and £R are also defined by duality as in the CE 

case. If A E M has a r finite support it defines a bounded linear form on 

LE(M, r) by 

VB E LE(M, r), < A, B > =  v(A*B). 

Let E be a a-order continuous symmetric function space ; we know that  E* is 

a symmetric function space. It is not known in general if LB. (M, r)  is the dual 

space of LE(M, r). This is true if r(Id) is finite by IX3, Lemma 1]. 

The following lemma gives the analogue of (I.1): 

LEMMA V . 2 :  Let E be a symmetric function space, let ( M, r) be such that r( Id) 

is finite. Let ( Pn)n> l be an increasing sequence of hermitian projections in M 

and let P = V,>I P,~. Then 

(a) If E is a-order continuous 

VxeLE(M,r ) ,  IIPx-PnxIIL~---~O (n---~q-oo). 
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(b) I.f F is a a-order continuous symmetric function space and E = F*, 

V x 6 L E ( M , r ) ,  P z - P , x  ,0 for a(LE,LF). 
n --* + o o  

Proof." (a) The claim is proved in ([X3], Lemma 2) for x = Id, i.e. II P - P n  IIL~--* 

0. Hence it is proved for x 6 M because 

Vz 6 M, 1[ Pz  - P , z  [[L~I[ X [[M[[ P - P ,  [[LE• 

As E is a-order continuous and r(Id) < +c~, M is norm dense in LE(M, r),  

which implies the claim because 

tt P-  }IM=II P IIM= 1. 

(b) is proved by duality from (a) because LE(M, r )  = L*F(M, r).  

Definition V.3: Let A 6 ReIQJ. We denote by 7~(A) the set of hermitian projec- 

tions lr = ~(B) where ~ is the spectral measure of A and B is any Borel subset 

of R, such that rA and ,rA -1 lie in M. Let P be the support projection of A, 

P + Q = I d .  

Note that P = V{~r I~r 6 79(A)}. 

We recall that A~r = ~rA (JR, Theorem 13.33]). 

The following lemma extends Lemma III.4. I(A) and I(A,p) are defined as in 

Definition III.3, LE(M, r )  rephcing CE and M replacing B(H). We refer to [R, 

Theorems 13.30 and 13.24] for the symbolic calculus. 

LEMMA V.4: Let E be a symmetric function space, v a finite trace on M. Let 

A 6 ReLE(M,r )  be positive (or more generally be such that A = U [ A [ where 

U = ~([ A 1), ~ being a continuous function on the spectrum of[ A [,with va/ues 

in {-{-1,-I}). Then 

(i) for every ~ e 9(A) ,  I(A,~ + O) is norm dense (for the L~ norm) in 

{B 6 R e M  I QBQ=O,  (r +O)B(~r + O ) =  B}. 

(ii) I rE  is a-order continuous {U,re~,(A)I(A,~r + Q)} ~ QRe LEQ and I(A) 

QRe LEQ are norm dense ha Re LE. 

Proof." (i) Let XE be the closure of Re M in the LE norm. We denote by X~ the 

set of continuous R-linear forms on the real space XE. Let ~ 6 X~ be such that 

(1) QeQ=O; ( 2 ) ( r + Q ) ~ ( r + Q ) = ~ ;  (3) ¥ R 6 R e M  < ~ , A R + R A > = O .  
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We must show that  £ = 0. 

As (~r + Q)A E Re M, (2) and (3) imply 

VR E Re M, 

hence in X~, 

(V.1) IrAt + £ATr = 0 

< e, AR + RA > = <  (rA)£ + £(A~r), R > =  0 

which implies 

IrA2t = *AZ~r 

because ~rA(~rA*) = -~rA(*A~r) = (-rA~)ATr = (gA~r)ATr. The assumption on A 

implies that irA = g(TrA 2) where g is a continuous function on the spectrum of 

IrA 2. As every continuous function on a bounded closed subset of R is a uniform 

limit of polynomials, irA is the norm limit in M of a sequence of polynomials 

:P,(TrA2). Hence Pn(TrA2)t = gPn(rA 2) and 

(v.2) 

By (V.1) and (V.2), 

(v.3) 

As A-11r E ReM,  (V.3) implies 

r A !  = tlrA = £ATr. 

~rA~ = 0 = IATr. 

hence by (1) and (2), £ = 0. 

(ii) As E is a-order continuous and r is finite, XE is the whole of ReLE(M, r) 

and by lemma V.2, U,e~,(A)(~r + Q)XE(~r + Q) is norm dense in XE. Hence (i) 

implies (ii). 

Let us observe that Lemmas III.1, II.4, II.6 remain valid in the setting of 

LE(M, r) spaces. The same proof as in Lemma II.5 shows that for A > 0 E 

LE(M,r)  

(V.4) V~ E SA, Wr E ~(A), VB > 0, B E M, < ~r£~r, B >_> 0. 

We want to prove 
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THEOREM V.5: Let E be a p-convex symmetric function space (1 < p < oo). 

Then every bounded linear operator T : LE(~)(M , r)  --* 7"( is 2v~-factorizable. 

We recall that,  if E is p-convex, the norm of E* is strictly increasing. 

If E (hence E (2)) is a-order continuous, if r is finite, and if L E o ) ( M , r  ) is 

reflexive, then the same proof as in Corollary IV.4 implies Theorem V.5. But 

we cannot reduce Theorem V.5 to this particular case as we did for CE spaces. 

Actually we will reduce Theorem V.5 to the particular case where 7- is finite, E 

and E (2) are the dual spaces of the a-order continuous function spaces E ,  and 

E (2) and T*: 9i --* M is compact. We first prove Theorem V.5 in this case. We 

need a technical lemma: 

LEMMA V.6: Let ~" be a finite trace on M. We assume that E and E (2) are the 

dual spaces o[ the a-order continuous symmetric function spaces E ,  and E (2). 

Let A _> 0 E LEo)(M,~'), let (Ir,),_>1 E P(A)  be an increasing sequence such 

that P = W,  7r, is the support projection of A. Let £ E Re SA such that ~ E M. 

Then ~ > 0 and there exists ~' ~ Re $a~ such that 

(a) = M'  ; 

(h) V,, _> 1 LE. ( g ,  r) 
(c) ~' = l im. ~r.£'~r. for a(L*E, LE) 

(d) e' _> 0. 

Proof." As ~- is finite, LE is the dual space of LE. and LEO ) is the dual space of 

LE?).  

As ~ E M C LE(.2) Lemma V.2 implies that P* is the norm limit of (~',£),>1 

in LE(.2 ). 

By the analogue of Lemma II.6, there exists *' E Re Sa 2 such that ~ = A*'. 

Hence £ = P£ = *P and 

Vn > 1, A-]~r,£ = IrnA-l~ = Irn~' E M. 

As A*' = *'A, A2* ' = *'A 2 = A£ = IA, hence, as * E M, ~r.* = ~r,, [R, 

Theorem 13.13]. This implies 7r.~ = ~rn*~r. hence ~rn~' = Ir.~'Tr. E ReM.  As 

(lrn+l - Irn)n>l is a W.U.C. series in M, (~rn~').>x is a weak Cauchy sequence in 

L~,  hence in LE..  Let A E R e L ~  be its limit. Then ~r.A = ~'n~' (n > 1), the 

sequence (A~r.A).>_I = (7r,£),>1 is norm convergent to £ in LE(.2 ) and convergent 

to AA for a(L*Eo),LEO)), hence A£' = AA. As n A JILL_< 1, A 6 ReSA2. By (V.4), 
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~r,,g~r, > 0 in LI(M,r)  and in M, hence ! > 0. By (V.4) again ~r,A~r,~ > 0 (n > 1) 

hence A >_ 0. )~ satisfies conditions a,b,c,d, which proves the lemma. 

Let us note that if E is p-convex (1 < p < 2) E .  is q-concave (~ + ~ = 1) hence 

LE. has cotype q by [X2], the w.u.c, series ((~r,,+~ - ~r,,)t'),,>_, is unconditionally 

convergent in LE. and ~ • LE.. 

LEMMA V.7: Let v be a finite trace on M, let E, E (2) be tile dual spaces of a- 

order continuous symmetric function spaces, such that E* has a strictly increasing 

norm. Then every compact linear operator T: LE(2)(M , 7) ~ 7"( such that 

T* : ?t -* M is 2V~ factorizable. 

Proof: By the analogue of Lemma IV.5 we may assume [] T ]l= 1 =][ T(A) II = 

II A llL (2), A > 0. Let ~ = ReT*T(A), hence t • ReSA, t • M. By the same 

proof as in Lemma IV.3, if P is the support projection of A and P + Q = Id, 

(a) V X = Q X Q • L E ( 2 ) ,  T ( X ) = O  

(b) W > 1, W • Z(A, + Q) 

II T(B)112_ 2 < 2 > 

where (Ir,,).>i and ~* satisfy the conditions stated in Lemma V.6. 

By the analogue of (IV.3), (V.5) still holds true for every B in the norm closure 

of I(A, ~r, + Q) in LE(2), hence by a) and lemma V.4, (V.5) holds true for every 

B in R e M  such that B = (~r, +Q)B(~,  +Q) (n >_ 1). We claim that (V.5) holds 

true for every B E Re M. Indeed let B E Re M, let B ,  = (Trn + Q)B(Tr, + Q) 

(n > 1). By Lemma V.2, 

B ,  ~ B, a(LE(2),LE(2) ). 

By assumption T is w*-norm continuous, hence 

t 2 I[ T(B) II 2 = lim II T(B,)[I2< 21im inf < ~ , B ,  > 

< 2 hm inf < g, (~r, + Q)B 2 (~r, + Q) > because t '  > 0 

= 2 lira inf < ~', ~r,B27r, > because Q£' = £'Q = 0 

= 2 lira < Ir,£'Tr,, B z > = <  e', B 2 > by Lemma V.6. 

We now claim that (V.5) holds true for every B 6 Re LE(,) ; by the analogue of 

Lemma IV.5, it will imply the lemma. Indeed for every B 6 ReLE(2) let (P , ) ,> I  
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be an increasing sequence of projections in 7)(B) such that V ,  pn is the support 

projection of B. Then (pnB) 2 <_ B ~ and p , B  E M (n >_ 1) ; by Lemma V.2 

pub ~ B, a(LEo),LE(,  )). 

Hence as £' > 0, (V.5) applied to p . B  (n > 1) implies 

]] T(B) I]= lira ][ T(p,B)  ]l<_ 21ira inf < £',(p,,B) 2 ><_ 2 < £',B 2 > .  

We now consider the reduction steps. The p-convexity assumption on E is used 

in the following lemma: 

LEMMA V.8: Let E be a p-convex symmetric function space (p > 1). Then either 

(i) E = E* where E ,  is a a-order continuous symmetric function space and 

LE(M,r)  = L ~ . ( M , r ) ,  

(ii) 

o r  

E and E* are a-order continuous and L ~ . ( M , r )  = LE**(M,r). If  r is 

finite, 

LE. . (M,r)  = L T ( M , r ) .  

E and E(~) satisfy (i) o r  Oi) simult~eo~ly. 

Proof: As E is p-convex E* is a q-concave Banach lattice (~ + ~ = 1) hence 

E* has no subspaee isomorphic to co. By [LT, Proposition 1.a.7] E* is a-order 

continuous hence a symmetric function space. By Definition V.0, either E is 

a-order continuous or E has the Fatou property. In this case by [LT, pp. 29-30] 

E is the dual space of E' (the set of integrals in E*, see [LT, p. 29]): indeed 

E = E"  ; as E I is a closed subspace of E*, E' is a-order continuous, hence 

E II = E'*. 

Note that E (2) is 2-convex ; E and E (2) are simultaneously a-order continuous 

or satisfy simultaneously the Fatou property, hence are dual spaces simultane- 

ously by the above proof. 

If r is finite the remaining assertions come from [X3, Lemma 1]. We claim 

that  for a q-concave symmetric function space LF* (M, r) = L*F(M, r) even if r 
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is not finite. Indeed by the proof of [X3, Lemma 1] LF. C L~ and we only have 

to show that L*F(M , 7) C IPI. By [LT, Proposition 2.b.3] 

Vq'>q, Ll(O, oo) NLq'(O, oo) c F  

hence 

LI(M,r) n L"(M,r)  C LF(M,r). 

Moreover LI(M, v) n L,'(M, r) is norm dense in LF(M, v) by the a-order conti- 

nuity of F and [X1, Lemma 4.5]. AsL"(M,  7)* = LP'(U,v) by[D] ( ~  +1~7 = 1) 

L*F( M,r) C M + LP' ( M,r) C .ff/I. 

This proves the claim and ends the proof of the lemma. 

The proof of Theorem V.5: By Lemma V.8 only two cases must be considered, 

either E (2) is a-order continuous or E (2) = F* where F is a-order continuous. 

Moreover by the same proof as in Lemma IV.6, the set of 2V~ factorizable oper- 

ators with norm less than_one is closed for the strong convergence topology. 

If E (2) is a-order continuous, by Lemma V.2 and the same proof as in Lemma 

IV.7, we may assume that r(Id) is finite ; in this situation, by Lemma V.8, 

L** I ~Ar r)  = LE(2)** (M,  v). E(~) [~w, 

As every T: LE(, ) ~ 7-I extends as T**: L~],) ~ ~ /wi th  H T** H=]I T H it is 

enough to prove the theorem for LE(~).. (M, r), hence in the next setting. 

Let E (2) = F* where F is a-order continuous. By Lemma V.8, LE(2 ) = L* F 
hence by the same proof as in Lemma IV.7, it is enough to prove the theorem 

when ~-(Id) is finite and T is such that T*: T/--* LF(M, ~-) has a finite dimensional 

range. As M is norm dense in LF(M, v) we may even assume that T*: 7" /~  M. 

By Lemma V.8 again, E = E* where E .  is a a-order continuous symmetric 

function space, hence the assumptions of Lemma V.7 are satisfied. By this temma 

such T's are 2v~-factorizable, which ends the proof of the theorem. 

[AL] 
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